Synthesis, Reactivity, and Molecular Structures of Bis(diphenylphosphanyl)amine- and Bis(diphenylphosphanyl)amide-Bridged Heterobimetallic μ -Isonitrile- and μ -Aminocarbyne Complexes (Fe-Pt)

Michael Knorr*a[*] and Carsten Strohmannb

Institut für Anorganische Chemie der Universität des Saarlandes^a, Postfach 151150, D-66041 Saarbrücken, Germany,

E-mail: m.knorr@rz.uni-sb.de

Institut für Anorganische Chemie der Universität Würzburg^b, Am Hubland, D-97074 Würzburg, Germany

Received November 17, 1997

Keywords: Heterobimetallics / μ-Isonitrile complexes / μ-Aminocarbyne complexes / Bis(diphenylphosphanyl)amine / Iron / Platinum

Addition of isonitriles to $[(OC)_3Fe(\mu-CO)(\mu-Ph_2PNHPPh_2)Pt-(PPh_3)]$ 1 produces the μ -isonitrile complexes $[(OC)_3Fe(\mu-C=NR)(\mu-Ph_2PNHPPh_2)Pt(PPh_3)]$ 2, which are transformed to the μ -aminocarbyne complexes $[(OC)_3Fe\{\mu-CN(El)R\}(\mu-Ph_2-PNHPPh_2)Pt(PPh_3)]^+$ 3 and 4 by electrophilic addition of

[El][BF₄] or [El][OSO₂CF₃] (El = H, Me). The dppa backbone of **4** is readily deprotonated by KOSiMe₃ to yield the very stable zwitterionic aminocarbyne complex [(OC)₃Fe{ μ -CN(Me)₂,6-xylyl}(μ -Ph₂PNPPh₂)Pt(PPh₃)] **5**.

Isonitriles (RNC) are often employed as ligands in coordination chemistry, since steric and electronic variation of the group R permits a fine tuning of the properties of a metal complex.[1][2] In addition to the innumerable examples of mononuclear isonitrile complexes, many heterobimetallic complexes and higher-nuclearity clusters bearing terminal isonitrile ligands have now been documented. However, polymetallic systems containing an isonitrile bridge between two different metal centers are still extremely scarce. [3a][3b][3c] We recently obtained the bis(diphenylphosphanyl)methane-bridged μ-isonitrile complex [(OC)₃Fe(μ- $C=N-xylyl)(\mu-dppm)Pt(PPh_3)$ by treatment $[(OC)_3Fe{Si(OMe)_3}(\mu-dppm)Pt(H)(PPh_3)]$ with 2,6-dimethylphenylisonitrile under formal loss of HSi(OMe)₃. [3c] We report here on a different route for the synthesis of the bis(diphenylphosphanyl)amine-bridged μ-isonitrile complexes $[(OC)_3Fe(\mu-C=NR)(\mu-dppa)Pt(PPh_3)]$ and on their transformation to u-aminocarbyne complexes, which have been characterized by multinuclear NMR techniques and single-crystal X-ray diffraction studies.

Results

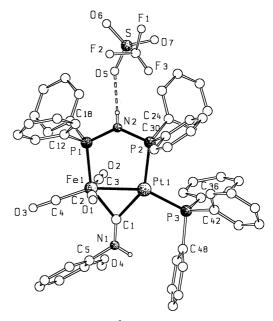
In a manner similar as described by Shaw. et al. for the synthesis of the dppm-bridged complex $[(OC)_3Fe(\mu-CO)(\mu-dppm)Pt(PPh_3)]^{[4]}$, we obtained the dppa-bridged analogue $[(OC)_3Fe(\mu-CO)(\mu-dppa)Pt(PPh_3)]$ 1 containing a μ -carbonyl ligand by reaction of $[(OC)_4Fe(dppa-P)]^{[5]}$ with $[Pt(H_2C=CH_2)(PPh_3)_2]$ in 79% yield, as shown in Scheme

1. Addition of *o*-anisylisonitrile or 2,6-xylylisonitrile in a 1:1 ratio to the latter complex yields *selectively* within 10 min. at ambient temperature the heterobimetallic species $[(OC)_3Fe(\mu-C=NR)(\mu-dppa)Pt(PPh_3)]$ (2a: R=2,6-xylyl; 2b: R=o-anisyl) by substitution of the bridging carbonyl in 1. There was no indication for a competing formation of an isomer bearing a terminal isonitrile ligand.

The most significant change in the IR spectra that accompanies the conversion of 1 to 2 is the replacement of the v(CO) stretch of the bridging carbonyl of 1 (1761 cm $^{-1}$) by a broadened v(C=N) stretch of medium intensity (2a: 1674; **2b**: 1670 cm⁻¹). The latter bands fall in the typical range for bridging isonitrile ligands with a strongly bent C= N-R group. The ${}^{31}P\{{}^{1}H\}$ -NMR spectra of all the compounds reported herein characteristically show three mutually coupled resonances, as exemplified by that of 2a. The spectrum of this μ-isonitrile complex features a doublet of doublets at $\delta = 114.3$, attributable to the iron-bound dppaphosphorus atom, which shows a strong coupling $[^{2+3}J(P-P) = 174 \text{ Hz}]$ to the platinum-bound dppa phosphorus at $\delta = 90.3$. These signals are split further due to the presence of the PPh₃ ligand. The latter gives rise to a doublet of doublets at $\delta = 40.4$, with couplings of 44 and 6 Hz. All signals are flanked by ¹⁹⁵Pt satellites, the Pt-P couplings of which are also evident in the ¹⁹⁵Pt-NMR spectrum (see Experimental Section).

Addition of excess of $HBF_4 \cdot Et_2O$ or $HOSO_2CF_3$ to a solution of **2** in dichloromethane led instantaneously to formation of the stable *N*-protonated cationic μ -aminocarbyne complexes $[(OC)_3Fe\{\mu\text{-}CN(H)R\}(\mu\text{-}dppa)Pt(PPh_3)][X]$ (**3a**: R = 2,6-xylyl, $X = BF_4^-$; **3b**: R = o-anisyl, $X = OSO_2CF_3^-$) in almost quantitative yields. It seems that in

^[+] Present address: Laboratoire de Chimie de Coordination UMR 7513, Université Louis Pasteur, 4, rue Blaise Pascal, F-67070 Strasbourg, France.


Scheme 1

this case protonation of the nitrogen atom of the $\mu\text{-CNR}$ ligand is preferred to protonation of the metal-metal bond or a metal center yielding a heterometallic hydride complex, a reaction which would be a priori also conceivable. For example, protonation of [(OC)_3Fe($\mu\text{-CO}$)($\mu\text{-dppm}$)Pt(PPh_3)] with HBF_4 is reported to give the cationic hydride-complex [(OC)_4Fe($\mu\text{-dppm}$)Pt(H)(PPh_3)][BF_4]. [4]

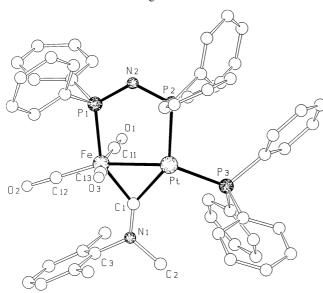
The spectroscopic data obtained in solution were in agreement with the results of a single-crystal X-ray diffraction study performed on 3b. The latter shows that the μ aminocarbyne ligand symmetrically bridges [Fe-C(1) 1.975(6), Pt-C(1) 1.923(5) Å] the two metal centers, the separation of which, 2.5282(10) Å, is indicative of the presence of a metal-metal bond. Due to steric factors, only the isomer with the anisyl group oriented towards the iron center is formed. The short bond length between C(1) and N(1) of 1.263(7) Å reflects the partial C=N double-bond character of the µ-aminocarbyne unit, which, therefore, may alternatively be considered as a dimetallated iminium salt ligand. To date, to the best of our knowledge, only one other example of a heterobimetallic u-aminocarbyne complex has been structurally described. A C-N distance of 1.29(2) Å was observed for this tungsten-gold complex bridged by a CN(Et)Me ligand. [6] The triflate counterion of 3b is hydrogen-bonded to the N-H $\{d[N(2)-H(2)...O(5)] 2.867 \text{ Å}; H(2)\cdots O(5) 2.10(7) \text{ Å}\} \text{ of }$ the dppa ligand. The position of H(2) could be located and was isotropically refined. A comparable distance of 2.91 Å

has been reported by Ellermann et al. for the hydrogen-bridged complex [Cu(CN)(dppa)PPh₃]·MeOH.^[7] Overall, the structure of **3b** shows strong similarities to that of the recently published μ -vinylidene complex [(OC)₃Fe{ μ -C= C(H)Ph}(μ -dppm)Pt(PPh₃)].^[8]

Figure 1. View of the crystal structure of **3b** showing the atomnumbering scheme^[a]

 $^{[a]}$ Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$: Fe-Pt 2.528(1), Fe-P(1) 2.226(3), Pt-P(2) 2.327(2), Pt-P(3) 2.291(1), Fe-C(1) 1.975(6), Pt-C(1) 1.923(5), C(1)-N(1) 1.263(7), P(1)-N(2) 1.668(9), P(2)-N(2) 1.697(9); C(1)-N(1)-C(5) 126.1(5), Pt-C(1)-Fe 80.9(2), Fe-Pt-C(1) 48.7(2), Pt-Fe-C(1) 50.5(2), C(1)-Fe-P(1) 146.9(2), C(1)-Pt-P(2) 144.2(2), C(1)-Pt-P(3) 103.5(2), P(1)-Fe-Pt 96.45(5), P(2)-Pt-P(3) 112.18(5), Fe-Pt-P(3) 151.32(4), P(1)-N(2)-P(2) 126.9(3).

In a similar manner, upon treatment of 2a with a slight excess of [Me₃O][BF₄], electrophilic addition affords the stable *N*-alkylated product [(OC)₃Fe{ μ -CN(Me)xylyl}(μ -dppa)Pt(PPh₃)][BF₄] **4**, which has been fully characterized by multinuclear NMR techniques and elemental analysis. Characteristic for this type of aminocarbyne complex is the ¹³C resonance of the μ -C atom, which is observed in the lowfield region at $\delta = 311.7$ as a doublet of doublets of doublets with $^2J(P-C)$ coupling constants of 3, 11, and 82 Hz. Upon treatment of **3** with weak bases such as NEt₃ or KOSiMe₃, deprotonation of the μ -aminocarbyne ligand yields the precursor compounds **2**.


However, addition of KOSiMe₃ to a solution of **4** did not yield the anticipated μ -siloxycarbene complex. ^[9] Instead, deprotonation of the dppa backbone occurred, with formation of the stable zwitterionic μ -aminocarbyne complex [(OC)₃Fe{ μ -CN(Me)xylyl}(μ -Ph₂PNPPh₂)Pt(PPh₃)] **5**.

In addition to a detailed spectroscopic investigation in solution (see Experimental Section), the solid-state structure of 5 has been determined by a single-crystal X-ray diffraction study. Comparison with the structure of 3b reveals that deprotonation of the dppa backbone has no significant influence on the metal-metal [Fe-Pt 2.517(1) Å] and metal-

Scheme 2

phosphorus distances. Only the shortened P(1)–N(2) and P(2)–N(2) distances of 1.608(4) and 1.633(4) Å may reflect a charge delocalization in the bis(diphenylphosphanyl)-amide bridge. These values are comparable to the P–N distances [1.626(7) and 1.598(7) Å] found in the bis(diphenylphosphanyl)amide-bridged dinuclear complex [Co₂(μ -CO)(CO)₄(μ -Ph₂PNPPh₂)(μ -PPh₂)] and the mononuclear chelate [Pd(Cl)(Ph₂PNPPh₂)(PEt₃)], as reported recently by Ellermann^[10] and Muller. [11] Compared to the P–N–P angle of **3b** [126.9(3)°], that of **5** is somewhat more acute and amounts to 123.4(2)°.

Figure 2. View of the crystal structure of ${\bf 5}$ showing the atom-numbering scheme $^{[a]}$

 $^{[a]}$ Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$: Fe-Pt 2.517(1), Fe-P(1) 2.276(2), Pt-P(2) 2.349(2), Pt-P(3) 2.277(1), Fe-C(1) 1.918(4), Pt-C(1) 1.996(5), C(1)-N(1) 1.296(6), P(1)-N(2) 1.608(4), P(2)-N(2) 1.633(4); C(1)-N(1)-C(2) 124.6(4), Pt-C(1)-Fe 80.0(2), Fe-Pt-C(1) 48.6(1), C(1)-Fe-Pt 51.3(2), C(1)-Fe-P(1) 146.9(2), C(1)-Pt-P(2) 141.40(13), C(1)-Pt-P(3) 109.5(1), P(1)-Fe-Pt 95.60(5), P(2)-Pt-P(3) 108.97(5), Fe-Pt-P(3) 157.14(4), P(1)-N(2)-P(2) 123.4(5).

To the best of our knowledge, the solid-state structures of **3b** and **5** represent the first examples of X-ray crystal-structure determinations performed on heterometallic bis(diphenylphosphanyl)amine- and bis(diphenylphosphanyl)amide-bridged systems. We are currently investigating the steric and electronic factors that govern the bonding mode of the coordinated isonitrile ligand (bridging vs. ter-

minal)^[12] and the reactivity of the amide bridge of $[(OC)_3Fe\{\mu\text{-}CN(R)(R')\}(\mu\text{-}Ph_2PNPPh_2)Pt(PPh_3)]$ towards electrophiles. Preliminary results using an $[AuPPh_3]^+$ fragment indicate that this route permits the synthesis of heterotrimetallic μ -aminocarbyne complexes of the type $[(OC)_3(L)Fe\{\mu\text{-}CN(R)(R')\}\{\mu\text{-}Ph_2PN(AuPPh_3)PPh_2\}Pt-(PPh_3)]^+$ (L=CO,CNR).

The *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully thanked for habilitation grants and financial support to M. K and C. S. and *Degussa AG* for a generous gift of Pt salts. We are also indebted to Prof. *M. Veith* for his support and for providing the institute facilities.

Experimental Section

All reactions were performed in Schlenk-tube flasks under purified nitrogen. Solvents were dried and distilled under nitrogen before use, toluene and hexane over sodium, dichloromethane from P₄O₁₀. Nitrogen was passed through BASF R3-11 catalyst and molecular-sieve columns to remove residual oxygen and water. Elemental C, H and N analyses were performed on a Leco Elemental Analyser CHN 900. – The ${}^{1}H$ -, ${}^{31}P\{{}^{1}H\}$ -, and ${}^{13}C\{{}^{1}H\}$ -NMR spectra were recorded at 200.13, 81.01 and 50.32 MHz, respectively, on a Bruker ACP 200 instrument. Phosphorus-chemical shifts were referenced to 85% H₃PO₄ in H₂O with downfield shifts reported as positive. 195Pt-chemical shifts were measured on a Bruker ACP 200 instrument (42.95 MHz) and externally referenced to K₂PtCl₄ in water with downfield chemical shifts reported as positive. NMR spectra were recorded in pure CDCl₃, unless otherwise stated. The presence and amount of CH₂Cl₂ retained in 3a and 4 was determined from the ¹H-NMR spectra. - The reactions were generally monitored by IR spectroscopy in the v(CO) region. – [Me₃O][BF₄] and 2,6-xylylisonitrile were obtained from Aldrich and Fluka and were used as received; dppa was prepared as described by Meinel and Nöth.[13]

Preparation of $[(CO)_3Fe(\mu-CO)(\mu-dppa)Pt(PPh_3)]$ (1): To a solution of [Pt(H₂C=CH₂)(PPh₃)₂] (751 mg, 1.0 mmol) in toluene (10 ml) one equivalent of [(OC)₄Fe(dppa-P)] (553 mg, 1.0 mmol) was added. After stirring for 20 min. at ambient temperature, the orange-red solution was concentrated and 1 was precipitated by slow addition of hexane. The resulting crude yellow-orange product, which was sufficiently pure for further reactions, was then dried in vacuo. Yield: 798 mg (79%). Analytically pure 1 was obtained in form of red-orange crystals by recrystallization from toluene/Et₂O. – IR (KBr): $\tilde{v} = 2006 \text{ cm}^{-1}$ (s), 1939 (vs), 1925 (sh), 1761 (m, br.) ν (CO). – ¹H NMR: δ = 4.97 [m, br., NH, ${}^{3}J(Pt-H) = 95.0 \text{ Hz}, 7.00-7.69 \text{ (m, 35 H, phenyl)}. - {}^{31}P\{{}^{1}H\}$ NMR: $\delta = 118.1$ [dd, $P^{1}(Fe)$, $^{2+3}J(P^{1}-P^{2}) = 213$, $^{3+4}J(P^{1}-P^{3}) =$ 4, $^{2+3}J(Pt-P) = 30 \text{ Hz}$], 93.4 [dd, $P^2(Pt)$, $^1J(Pt-P) = 2877 \text{ Hz}$], 42.0 [dd, $P^3(Pt)$, ${}^2J(P^2-P^3) = 63$, ${}^1J(Pt-P) = 4628$ Hz]. ¹⁹⁵Pt{¹H}NMR: $\delta = -2543$ [ddd, ²⁺³J(Pt-P¹) = 30, ¹J(Pt-P²) = 2877, ${}^{1}J(Pt-P^{3}) = 4628 \text{ Hz}]. - C_{46}H_{36}FeNO_{4}P_{3}Pt \cdot Et_{2}O (1010.65)$ + 74.12): calcd. C 55.36, H 4.27, N 1.29; found C 55.48, H 4.04,

Preparation of $[(CO)_3Fe(\mu\text{-}CN\text{-}xylyl)(\mu\text{-}dppa)Pt(PPh_3)]$ (2a): To a solution of 1 (202 mg, 0.2 mmol) in CH_2Cl_2 (5 ml), one equivalent of 2,6-xylylisonitrile, dissolved in CH_2Cl_2 (5 ml), was added dropwise. After stirring for 15 min. at ambient temperature (evolution of CO), the orange-red solution was concentrated and 2a was precipitated by the slow addition of hexane. The resulting microcrystalline yellow-orange product was dried in vacuo. Yield: 194

FULL PAPER ______ M. Knorr, C. Strohmann

mg (87%). – IR (CH₂Cl₂): $\tilde{\nu}=2004$ cm⁻¹ (s), 1934 (vs) ν(CO); 1671 (m, br.) ν(CN). – IR (KBr): $\tilde{\nu}=3270$ cm⁻¹ (w) ν(NH); 2000 (m), 1934 (s), 1922 (s) ν(CO); 1674 (m, br.) ν(C=N). – ¹H NMR: $\delta=2.07$ (s, 3 H, xylyl-CH₃), 4.96 [m, br., NH, 3J (Pt-H) = 89.0 Hz], 6.84–7.88 (m, 38 H, phenyl). – 31 P{¹H} NMR: $\delta=114.3$ [dd, P¹(Fe), ^{2+3}J (P¹-P²) = 174, ^{3+4}J (P¹-P³) = 6, ^{2+3}J (Pt-P) = 50 Hz], 90.3 [dd, P²(Pt), ^{1}J (Pt-P) = 2866 Hz], 40.4 [dd, P³(Pt), ^{2}J (P²-P³) = 44, ^{1}J (Pt-P) = 4326 Hz]. – 195 Pt{¹H}NMR: $\delta=-2678$ [ddd, ^{2+3}J (Pt-P¹) = 50, ^{1}J (Pt-P²) = 2856, ^{1}J (Pt-P³) = 4328 Hz]. – C_{54} H₄₅FeN₂O₃P₃Pt (1113.82): calcd. C 58.23, H 4.07, N 2.51; found C 58.26, H 3.86, N 2.70.

Preparation of [(CO)₃Fe(μ-CN-o-anisyl)(μ-dppa)Pt(PPh₃)] (**2b**): This yellow derivative was prepared and isolated as described for **2a**. − IR (CH₂Cl₂): $\tilde{v} = 2008 \text{ cm}^{-1}$ (m), 1940 (s) v(CO); 1670 (m, br.) v(C=N). − IR (KBr): $\tilde{v} = 3224 \text{ cm}^{-1}$ (w) v(NH); 2003 (m), 1933 (s) v(CO); 1669 (m, br.) v(C=N). − ¹H NMR: $\delta = 3.71$ (s, 3 H, OCH₃), 5.04 [m, br., NH, ³J(Pt−H) = 89.8 Hz], 6.75−7.75 (m, 39 H, phenyl). − ³¹P{¹H} NMR: $\delta = 113.4$ [dd, P¹(Fe), ²⁺³J(P¹-P²) = 173, ³⁺⁴J(P¹-P³) = 9, ²⁺³J(Pt−P) = 40 Hz], 89.3 [dd, P²(Pt), ¹J(Pt−P) = 2884 Hz], 40.0 [dd, P³(Pt), ²J(P²-P³) = 45, ¹J(Pt−P) = 4262 Hz]. − ¹⁹⁵Pt{¹H} NMR: $\delta = -2688$ [ddd, ²⁺³J(Pt−P¹) = 40, ¹J(Pt−P²) = 2886, ¹J(Pt−P³) = 4264 Hz]. − C₅₃H₄₃FeN₂O₄P₃Pt (1115.79): calcd. C 57.05, H 3.88, N 2.51; found C 56.69, H 4.16, N 2.29.

*Preparation of [(CO)*₃*Fe*{μ-*CN(H) xylyl*}(μ-*dppa*) *Pt(PPh*₃) *J*[*BF*₄] (**3a**): This complex was prepared by adding excess HBF₄ÆEt₂O to a solution of **2a** (0.111 g, 0.1 mmol) in CH₂Cl₂ (10 ml) at 253 K. After warming to ambient temperature, all volatiles were removed under reduced pressure. The orange-red residue was rinsed with Et₂O (3 ml) and dried in vacuo. – IR (CH₂Cl₂): $\tilde{v} = 2041 \text{ cm}^{-1}$ (m), 1981 (vs) v(CO); 1527 (w) v(CN). – ¹H NMR: $\delta = 2.10$ (s, $\delta = 4.10$ H, xylyl-CH₃), $\delta = 4.10$ H, shown, $\delta = 4.10$ H, shown $\delta = 4.10$ H, s

 $[(CO)_3Fe\{\mu\text{-}CN(H)\text{-}o\text{-}anisyl\}(\mu\text{-}dppa)Pt\text{-}$ Preparation of $(PPh_3)/BF_4/$ (3b): This complex was prepared by adding excess HOSO₂CF₃ to a solution of **2b** (0.112 g, 0.1 mmol) in CH₂Cl₂ (10 ml) at 253 K. After warming to ambient temperature, all volatiles were removed under reduced pressure. The orange-red residue was rinsed with Et₂O (3 ml) and dried in vacuo. – IR (CH₂Cl₂): \tilde{v} = 2042 cm⁻¹ (m), 1979 (vs) ν(CO); 1532 (w) ν(CN). - ¹H NMR: δ = 3.67 (s, 3 H, OCH₃), 6.94 [m, br., NH, ${}^{3}J(Pt-H) = 84$ Hz], 6.87-7.42 (m, 39 H, phenyl), 7.91 (m, br., NH). - ³¹P{¹H} NMR: $\delta = 102.2 \text{ [dd, } P^{1}(\text{Fe}), ^{2+3}J(P^{1}-P^{2}) = 99, ^{3+4}J(P^{1}-P^{3}) = 14,$ $^{2+3}J(P^1-Pt) = 73$ Hz], 79.0 [dd, $P^2(Pt)$, $^2J(P^2-P^3) = 12$, ${}^{1}J(P^{2}-Pt) = 2868 \text{ Hz}, 37.3 \text{ [dd, } P^{3}(Pt), {}^{1}J(P^{3}-Pt) = 3791 \text{ Hz}. ^{195}\text{Pt}\{^{1}\text{H}\} \text{ NMR: } \delta = -2510 \text{ [ddd, } ^{2+3}\textit{J}(\text{P}^{1}-\text{Pt}) = 73, \, ^{1}\textit{J}(\text{P}^{2}-\text{Pt}) = 2868, \, ^{1}\textit{J}(\text{P}^{3}-\text{Pt}) = 3791 \text{ Hz]. } - \text{C}_{54}\text{H}_{44}\text{F}_{3}\text{FeN}_{2}\text{O}_{7}\text{P}_{3}\text{PtS (1265.83):}$ calcd. C 50.18, H 3.70, N 2.17; found C 51.23, H 3.51, N 2.21.

Preparation of $[(CO)_3Fe\{\mu\text{-}CN(Me)xylyl\}(\mu\text{-}dppa)Pt(PPh_3)]$ [BF₄] (4): [Me₃O][BF₄] (118 mg, 0.8 mmol) was added to a solution of **2a** (557 mg, 0.5 mmol) in CH₂Cl₂ (15 ml). After stirring for 16 h, the yellow solution was concentrated to a volume of ca. 10 ml and then layered with Et₂O. After 2 d, yellow air-stable crystals were formed, which were suitable for analysis by X-ray crystallography. Yield: 465 mg (74%). – IR (KBr): \tilde{v} = 3217 cm⁻¹ (w) v(NH); 2028 (m), 1961 (vs) v(CO); 1542 (w) v(CN). – ¹H NMR: δ = 2.24 (s, δ H, xylyl-CH₃), 2.83 (s, 3 H, NMe), δ .38 [m, br., NH,

 $^{3}J(\text{Pt-H}) = 91 \text{ Hz}], 6.96-7.62 \text{ (m, }38 \text{ H, phenyl)}. - {}^{13}\text{C}\{^{1}\text{H}\}$ NMR: δ = 311.7 [ddd, μ-C, $^{2}J(\text{P-C}) = 82$, $^{2}J(\text{P-C}) = 11$, $^{2}J(\text{P-C}) = 3 \text{ Hz}], 209.3 [dd, 2 \text{ CO}, <math>^{2}J(\text{P-C}) = 27$, $^{3}J(\text{P-C}) = 5 \text{ Hz}], 208.5 [d, 1 \text{ CO}, <math>^{2}J(\text{P-C}) = 7 \text{ Hz}], 117.9-138.4 \text{ (m, phenyl)}, 51.6 [dt, N-CH₃, <math>^{4}J(\text{P-C}) = 9$, $^{4}J(\text{P-C}) = 3 \text{ Hz}], 17.1 \text{ (s, xylyl-CH₃)}. - <math>^{31}\text{P}\{^{1}\text{H}\}$ NMR: δ = 102.6 [dd, P1(Fe), $^{2+3}J(\text{P1-P2}) = 110$, $^{3+4}J(\text{P1-P3}) = 11$, $^{2+3}J(\text{P1-Pt}) = 70 \text{ Hz}], 81.1 [dd, P2(\text{Pt}), ^{2}J(\text{P2-P3}) = 8$, $^{1}J(\text{P2-Pt}) = 2837 \text{ Hz}], 37.2 [dd, P3(\text{Pt}), ^{1}J(\text{P3-Pt}) = 3810 \text{ Hz}]. - ^{195}\text{Pt}\{^{1}\text{H}\}$ NMR: δ = -2717 [ddd, $^{2+3}J(\text{P1-Pt}) = 70$, $^{1}J(\text{P2-Pt}) = 2837$, $^{1}J(\text{P3-Pt}) = 3808 \text{ Hz}]. - C_{55}H_{48}BF_{4}\text{FeN}_{2}O_{3}P_{3}\text{Pt} \cdot 0.5 \text{ CH}_{2}\text{Cl}_{2} \text{ (1215.66} + 42.47): calcd. C 52.98, H 3.93, N 2.23; found C 52.55, H 4.05, N 2.20.$

Preparation of $[(CO)_3Fe\{\mu\text{-}CN(Me)xylyl\}(\mu\text{-}Ph_2PNPPh_2)Pt\text{-}$ (PPh₃)] (5): KOSiMe₃ (3 mmol) was added to a suspension of 4 (0.5 mmol) in Et₂O (25 ml). The deprotonated product gradually dissolved within a period of 1 h. The yellow solution was then filtered and concentrated under reduced pressure. After addition of hexane, analytically pure 5 was precipitated. The product was filtered off and was dried in vacuo for 2 h. Yield: (447 mg, 84%). Suitable crystals for analysis by X-ray crystallography were obtained by layering a concentrated solution of 5 in CH₂Cl₂ with hexane. – IR (KBr): $\tilde{v} = v(CO) \ 2002 \ cm^{-1}$ (m), 1934 (vs) v(CO); v(CN) 1538 (w) v(CN). – ¹H NMR: $\delta = 2.22$ (s, 6 H, xylyl-CH₃), 2.67 (s, 3 H, NMe), 7.01-7.85 (m, 38 H, phenyl). $- {}^{13}C\{{}^{1}H\}$ NMR: $\delta = 312.0$ [dd, μ -C, ${}^2J(P-C) = 80$, ${}^2J(P-C) = 19$ Hz], 209.8 [dd, 2 CO, ${}^{2}J(P-C) = 27$, ${}^{3}J(P-C) = 6$ Hz], 208.6 [d, 1 CO, ${}^{2}J(P-C) = 8 Hz$, 117.9–150.2 (m, phenyl), 51.4 [dt, N-CH₃, ${}^{4}J(P-C) = 9$, ${}^{4}J(P-C) = 4$ Hz], 17.4 (s, xylyl-CH₃). $- {}^{31}P\{{}^{1}H\}$ NMR: $\delta = 88.0$ [br. d, P1(Fe), $^{2+3}J(P1-P2) = 130$ Hz], 72.3 [br. d, P2(Pt), ${}^{1}J(P2-Pt) = 2554 \text{ Hz}$], 35.3 [d, P3(Pt), ${}^{2}J(P2-P3) = 12$, ${}^{1}J(P3-Pt) = 3757 \text{ Hz}$]. $-{}^{195}Pt\{{}^{1}H\} \text{ NMR: } \delta = -2504 \text{ [br. dd.]}$ ${}^{1}J(P2-Pt) = 2554$, ${}^{1}J(P3-Pt) = 3757$ Hz]. $-C_{55}H_{47}FeN_{2}O_{3}P_{3}Pt$ (1127.85): calcd. C 58.57, H 4.20, N 2.48; found C 58.25, H 4.05, N, 2.10.

Crystal-Structure Determination of 3b[14][15]: Collection of crystallographic data: Siemens Stoe AED 2 diffractometer; Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$), graphite monochromator; intensity data were collected using the $\Omega/2\Theta$ scan mode at 293 K. C₅₄H₄₄F₃N₂FeO₇P₃PtS: yellow crystals with approximate dimensions of $0.5 \times 0.3 \times 0.2$ mm, triclinic, space group $P\overline{1}$; a =13.105(3), b = 14.387(3), c = 14.997(7) Å, $\alpha = 81.29(3)$, $\beta =$ 71.77(3), $\gamma = 78.09(3)^{\circ}$, $V = 2616.3(10) \text{ Å}^3$, Z = 2, $\rho_{\text{calcd}} = 1.607$ g cm $^{-3}$, F(000) = 1260; 9608 independent reflections in the scan range $2.38 < 2\theta < 52.0^{\circ}$, of which 8455 with $I > 2\sigma(I)$ were used in the structure solution and refinement for 654 parameters; R1 = $\sum F_{o - Fc} / \sum F_{o} = 0.0411[I > 2\sigma(I)], wR2 = [\sum w(F_{o}^2 - F_{c}^2)^2 / \sum wF$ $_{\rm o}^{\rm o}$]^{1/2} = 0.1222 (all data), GoF = 1.114; anisotropic refinement for non-hydrogen atoms; hydrogen atoms in idealized geometries, except for H(2), which was refined isotropically. Highest residual electron density 0.793 eÅ^{-3} .

Crystal Structure Determination of 5: Collection of crystallographic data: Siemens Stoe AED 2 diffractometer; $\text{Mo-}K_{\alpha}$ radiation $(\lambda=0.71073~\text{Å})$, graphite monochromator; intensity data were collected using the $\Omega/2\Theta$ scan mode at 293 K. $C_{55}H_{47}\text{FeN}_2\text{O}_3\text{P}_3\text{Pt}$: yellow crystals with approximate dimensions of $0.65\times0.4\times0.35$ mm, monoclinic, space group $P2_1/c$; a=11.026(6), b=18.524(9), c=23.708(12)~Å, $\beta=90.49(4)^{\circ}$, $V=4842.4(4)~\text{Å}^3$, Z=4, $\rho_{\text{calcd}}=1.547~\text{g cm}^{-3}$, F(000)=2256; 7614 independent reflections in the scan range $1.72<2\theta<48.0^{\circ}$, of which 6095 with $I>2\sigma(I)$ were used in the structure solution and refinement for 589 parameters; $R1=\Sigma|F_0-F_c|\Sigma|F_0|=0.0295~[I>2\sigma(I)]$, $wR2=[\Sigma w(F_0^2-F_c^2)^2/\Sigma wF_0^4]^{1/2}=0.0765$ (all data), GoF = 1.036; anisotropic refine-

ment for non-hydrogen atoms; hydrogen atoms in idealized geometries. Highest residual electron density 0.793 eA^{-3} .

Y. Yamamoto, H. Yamazaki, Coord. Chem. Rev. 1972, 8,

1. Talmanoto, 1. 225-239.
 [2] [2a] E. Singleton, H. E. Oosthuizen, Adv. Organomet. Chem. 1983, 22, 209-310. - [2b] D. Lentz, Angew. Chem. 1994, 106, 1377-1393; Angew. Chem. Int. Ed. Engl. 1994, 33, 1315-1331.
 [3] [3a] K. S. Rattliff, P. E. Fanwick, C. P. Kubiak, Polyhedron 1990, 9, 2651-2653. - [3b] J. Fornies, F. Martinez, R. Navarro, A. Redondo, M. Tomas, A. J. Welch, J. Organomet. Chem. 1986, 316, 351-366. - [3e] M. Knorr, T. Faure, P. Braunstein, J. Organomet. Chem. 1993, 447, C4-C6.
 [4] X. L. R. Fontaine, G. B. Jacobson, B. L. Shaw, M. Thornton-Pett J. Chem. Soc., Dalton Trans. 1988, 741-750.

Pett, J. Chem. Soc., Dalton Trans. 1988, 741–750.

- M. Knorr, P. Braunstein, A. Tiripicchio, F. Ugozzoli, *J. Organomet. Chem.* 1996, 526, 105-116.
 ^[6] V. G. Albano, L. Busetto, M. C. Cassani, P. Sabatino, A.
- Schmitz, V. Zanotti, *J. Chem. Soc., Dalton Trans.* **1995**, 2087–2093. ^[6b] For examples of X-ray structures of homobimetallic μ-aminocarbyne complexes see: S. Willis, A. R. Manning, *J. Chem. Soc., Dalton Trans.* **1979**, 23–27. ^[6c] D. L. DeLaet, P. E. Fanwick, C. P. Kubiak, *Organometallics* **1986**, 5, 1807–1811. – [6d] A. Schröder, W. Sperber, J. Fuchs, W. P. Fehlhammer, *Chem. Ber.* **1992**, *125*, 1001–1005.

- [7] J. Ellermann, F. A. Koch, K. J. Meier, M. Moll, J. Organomet. Chem. 1992, 428, C44.
- M. Knorr, C. Strohmann, P. Braunstein, *Organometallics* **1996**, 15, 5653-5663.
- [9] M. Knorr, P. Braunstein, A. DeCian, J. Fischer, Organometallics **1995**, 14, 1302-1309.
- [10] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, W. Bauer, J. Or-
- ganomet. Chem. 1994, 481, 259–274.
 [11] [11a] M. Gomez, G. Muller, J. Sales, X. Solans, J. Chem. Soc., Dalton Trans. 1993, 221–225. [11b] See also: J. Geicke, I.-P. Lorenz, P. Mürschel, K. Polborn, Z. Naturforsch . 1997, 52b,
- [12] M. Knorr, C. Strohmann, poster abstract 98, 4th Anglo/German Inorganic Chemistry Meeting, University of Marburg
- [13] H. Nöth, E. Meinel, *Z. Anorg. Allg. Chem.* **1967**, *349*, 225–240. [14] G. M. Sheldrick, *SHELXL-97*, *SHELXS-97*, Universität
- Göttingen, 1997.
- [15] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100733. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44(0)1223/ 336033; e-mail: teched@chemcrys.cam.ac.uk].

[97270]